
AUTOMATED BRIDGE INSPECTION IMAGE LOCALIZATION AND 

RETRIEVAL BASED ON GPS-REFINED SIMILARITY LEARNING 
by 

Benjamin E. Wogen 

 

A Thesis 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Master of Science in Civil Engineering 

 
 

Lyles School of Civil Engineering 

West Lafayette, Indiana 

May 2023 

  



 
 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Shirley Dyke, Chair 

Lyles School of Civil Engineering 

Dr. Julio Ramirez 

Lyles School of Civil Engineering 

Dr. Randall Poston 

Pivot Engineers 

 

Approved by: 

Dr.  Dulcy Abraham 

 

 



 
 

3 

Dedicated to my Parents, Jen and Steve, and my brother Connor. 

And to my grandparents, Sandra, Joyce, and Eric.   

 



 
 

4 

ACKNOWLEDGMENTS 

I am incredibly grateful for the support and guidance of my advisor, Prof. Shirley Dyke, 

whom I had the pleasure of working with for the past three years as both an undergraduate and a 

graduate student. I would also like to thank Prof. Julio Ramirez and Dr. Randall Poston for kindly 

serving on my committee. 

I am grateful for the mentoring of  Dr. Jongseong Choi, whose papers introduced me to the 

topic of image similarity and who has met with me regularly to discuss the details of this research. 

I also acknowledge that much of the code used throughout this study was adapted from that which 

was provided by Dr. Choi.  

Thank you to the rest of the Intelligent Infrastructure Systems Laboratory at Purdue 

University, past and present, for their continued feedback and support of my research. The 

members of the computer vision team, particularly Xin Zhang, Xiaoyu Liu, and Lissette Iturburu, 

served as valuable mentors as I refined my coding skills and learned about artificial intelligence. I 

am also appreciative of the JTRP predictive analytics team, particularly Manuel Salmeron and 

Nichole Criner, who allowed me to assist with their research and to tag along for many field visits 

and bridge inspections.  

All of the bridge inspection photos utilized in this research were provided by the Indiana 

Department of Transportation, who has approved their use in this document. A derivation of this 

work has been submitted to a journal and is currently under review.  

  



 
 

5 

TABLE OF CONTENTS 

LIST OF TABLES .......................................................................................................................... 7 

LIST OF FIGURES ........................................................................................................................ 8 

MATHEMATICAL NOTATION .................................................................................................. 9 

ABSTRACT .................................................................................................................................. 10 

 INTRODUCTION ................................................................................................................. 11 

 BACKGROUND ................................................................................................................... 12 

2.1 Automation in Bridge Inspection ...................................................................................... 12 

2.2 Motivation for the Proposed Method ................................................................................ 13 

 METHODOLOGY ................................................................................................................ 15 

3.1 Overview ........................................................................................................................... 15 

3.2 Structural Element Classification ..................................................................................... 16 

3.3 Image Similarity Training ................................................................................................. 17 

3.4 GPS-Refined Composite Similarity .................................................................................. 19 

 EXPERIMENTAL VALIDATION AND RESULTS ........................................................... 21 

4.1 Initial Classification Step .................................................................................................. 21 

4.2 Bridge Deck Dataset Overview ........................................................................................ 22 

4.3 Labelling Definitions and Challenges ............................................................................... 24 

4.4 GPS Ground Truth Estimation .......................................................................................... 26 

4.5 Similarity Training Setup .................................................................................................. 27 

4.6 Composite Similarity Scoring and Ranking ..................................................................... 28 

 DISCUSSION ........................................................................................................................ 32 

5.1 Overall Performance ......................................................................................................... 32 

5.2 Composite Scoring Optimization ...................................................................................... 33 

5.3 Practical Considerations.................................................................................................... 34 

 CONCLUSION...................................................................................................................... 36 

APPENDIX A. SUBSTRUCTURE CLASSIFIER RESULTS .................................................... 37 

APPENDIX B. DETAILED SIMILARITY LABELING ............................................................ 39 

APPENDIX C. SAMPLE IMAGE QUERY RESULTS .............................................................. 41 



 
 

6 

REFERENCES ............................................................................................................................. 52 

PUBLICATIONS .......................................................................................................................... 58 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

7 

LIST OF TABLES 

Table 1. Summary of the labelled dataset as divided into training and testing subsets. ............... 26 

Table 2. Similarity ranking success for different proportions of database images having GPS. .. 31 

 

 

 

  



 
 

8 

LIST OF FIGURES 

Figure 1. Workflow for the image localization and retrieval method........................................... 15 

Figure 2. The classification schema applied in the developed method (adapted from Zhang et al. 
2022). ............................................................................................................................................ 16 

Figure 3. Representation of the embedding process for (a) a similarly defined pair and (b) a 
dissimilarly defined pair. .............................................................................................................. 18 

Figure 4. The gathered dataset contains historical deck images for 40 bridges with varying GPS 
coordinate availability. Approximately half of the images (52%) have nonzero GPS. ................ 22 

Figure 5. Sample timeline of similar deck images taken from the dataset for a single bridge, 
showing EXIF metadata extracted from the image files and errors from the estimated ground truth.
....................................................................................................................................................... 23 

Figure 6. Examples of labelling for typical bridge images. .......................................................... 25 

Figure 7. Distribution of satellite-estimated ground truth distances for all image pairs in the 
validation dataset. ......................................................................................................................... 26 

Figure 8. A sample of the loss history for 150 training epochs. ................................................... 28 

Figure 9. Similarity score distributions for all pairs in the testing dataset, shown for an example 
where 𝛽𝛽 = 0.30, 𝑑𝑑𝑑𝑑ℎ = 20m, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −0.40, for varying rates of GPS availability. ......... 30 

Figure 10. Similarity rank distributions for all starting query images in the testing dataset, for the 
same parameters provided in Fig. 9. ............................................................................................. 30 

Figure 11. Optimizing β for a database with moderate GPS error (0–50 meters). ....................... 34 

 

 

 

 

 

 



 
 

9 

MATHEMATICAL NOTATION 

𝐶𝐶𝐶𝐶 composite similarity score for a given pair of images 

𝐷𝐷𝑊𝑊 Euclidean distance (L2-Norm) between two embedded image vectors 

𝑑𝑑 physical distance, in meters, between the coordinate metadata of a given pair of 
images 

𝑑𝑑𝑡𝑡ℎ threshold distance, in meters 

𝐺𝐺𝑊𝑊 trained function used in the machine learning algorithm– in this publication, a 
Siamese convolutional neural network  

𝐺𝐺𝐺𝐺𝐶𝐶 latitude and longitude coordinates for a single image in the dataset 

𝐿𝐿 value of the contrastive loss function, to be minimized in the network training 
process 

ℒ set of inspection images belonging to a single bridge, for a single structural 
element of the bridge 

𝑝𝑝 margin used in the contrastive loss function 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 minimum penalty, representing the minimum score of the GPS component of 
the composite similarity score prior to being multiplied by the weight beta 

𝐶𝐶𝐶𝐶 similarity score for a given pair of images without considering GPS information 

𝑊𝑊 weights of the parameters of the trained function, 𝐺𝐺𝑊𝑊 

𝑋𝑋𝚤𝚤���⃗  vector representation of a single image in the dataset 

�⃗�𝑥𝑚𝑚 reduced dimension embedding vector for a single image in the dataset 

𝑌𝑌 pairwise similarity training label 

𝛽𝛽 beta weight representing the proportion of the composite similarity score being 
contributed by the GPS component of the composite similarity equation 
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ABSTRACT 

The inspection of highway bridge structures in the United States is a task critical to the 

national transportation system. Inspection images contain abundant visual information that can be 

exploited to streamline bridge assessment and management tasks. However, historical inspection 

images often go unused in subsequent assessments as they are disorganized and unlabeled. Further, 

due to the lack of GPS metadata and visual ambiguity, it is often difficult for other inspectors to 

identify the location on the bridge where past images were taken. While many approaches are 

being considered toward fully- or semi-automated methods for bridge inspection, there are 

research opportunities to develop practical tools for inspectors to make use of those images already 

in a database. In this study, a deep learning-based image similarity technique is combined with 

image geolocation data to localize and retrieve historical inspection images based on a current 

query image. A Siamese convolutional neural network (SCNN) is trained and validated on a 

gathered dataset of over 1,000 real world bridge deck images collected by the Indiana Department 

of Transportation. A composite similarity (CS) metric is created for effective image ranking and 

the overall method is validated on a subset of eight bridge’s images. The results show promise for 

implementation into existing databases and for other similar structural inspections, showing up to 

an 11-fold improvement in successful image retrieval when compared to random image selection. 
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 INTRODUCTION 

The United States’ inventory of highway bridge structures is a critical part of its national 

transportation system. According to the 2021 American Society of Civil Engineers’ annual 

Infrastructure Report Card, approximately 7.5% of the nearly 620,000 bridges in the National 

Bridge Inventory (NBI) are rated as being in poor condition or structurally deficient (ASCE 2021). 

Their report on the nation’s bridges concluded that the United States must drastically increase 

investment to keep up with deterioration, and a systematic program for preservation is needed that 

focuses on preventative maintenance (ASCE 2021). 

Routine structural inspections, conducted at least every 24 months, are an important part 

of bridge preservation and provide the data necessary for asset managers to make timely 

maintenance decisions (Abdallah et al. 2022). These inspections are generally conducted by visual 

observation. As a result, condition assessments are largely subjective and result in high variability 

(Phares et al. 2004; Graybeal et al. 2002). The subjectivity of bridge inspections has motivated a 

large body of research that aims to develop semi- or fully-autonomous inspection procedures 

(Dorafshan and Maguire 2018). However, at the present, procedures for routine bridge inspections 

require that humans perform all inspection observations manually (FHWA 2022). Thus, formal 

adoption of these capabilities may take some time.  

Another opportunity is to empower the human inspector through automation. There is a 

myriad of data already being stored in asset bridge management databases, and enabling inspectors 

to capitalize on this data is expected to increase efficiency and effectiveness. To this end, I aim to 

develop a novel tool for bridge inspectors which enables the rapid recall of past bridge images to 

support their current decision-making. I develop a method which leverages deep machine learning 

and GPS coordinate information to compute a composite similarity (CS) metric between pairs of 

images which are then ranked and returned to the inspector. The approach is validated using a 

dataset of more than 1,000 bridge deck images collected through routine inspections from the 

Indiana Department of Transportation (INDOT), and the results show promise for application into 

existing databases. 
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 BACKGROUND 

2.1 Automation in Bridge Inspection  

Current research aims to develop technologies using advanced computing and artificial 

intelligence to improve the efficiency and safety of bridge inspections. Towards this vision, 

researchers are developing systems to gather data autonomously or remotely using robotic agents 

(Phillips and Narasimhan 2019; Sutter et al. 2018; Lim et al. 2014) and unmanned aerial vehicles 

(UAVs) (Montes et al. 2022; Seo et al. 2022; Perry et al. 2020; Kim et al. 2018; Lovelace and 

Wells 2018). Researchers have also proposed a phased plan for DOTs to transition to one such 

fully automated inspection system (Lin et al. 2021). These proposed methods involve costly 

vehicles affixed with equipment such as high-end navigation sensors, infrared cameras, and laser 

scanners. The inspection robot developed by Phillips and Narasimhan, for example, utilized an 

unmanned ground vehicle (UGV) affixed with a light lidar scanner, an inertial measurement unit, 

a GPS unit, and an onboard computer.  

Researchers are also attempting to automatically quantify and assess structural damage by 

implementing machine learning algorithms to process images. These computer vision-based 

approaches have been explored for virtually all elements of a bridge, including the detection of 

concrete cracks (Deng et al. 2022; Kao et al. 2023; Nguyen et al. 2023), connection bolt issues (Li 

et al. 2023; Jiang et al. 2022), steel paint condition (Alayub et al. 2022), joint damage (Gagliardi 

et al. 2022), and for determining substructure vulnerability (Zhang et al. 2022).  

From an implementation perspective, many of these technologies have real or perceived 

challenges including higher equipment costs, increased inspector training requirements, larger data 

storage requirements, and reduced driver safety around robots. While some techniques such as 

UAV-based inspections are already being utilized for special inspections, scaling these techniques 

to the entire NBI inventory will be difficult (Lovelace and Wells 2018). Additionally, the general 

public may be slow to approve of inspection automation where life safety is of primary concern 

(Shariff et al. 2017). These challenges must be overcome before DOTs  are able to implement them 

as a part of their processes. A predecessor to autonomous data collection and interpretation may 

be to provide inspectors with automated systems in a way that they still make all decisions 

themselves (Jiang et al. 2007).  



 
 

13 

Automating and improving image organization is one way for inspectors to get more 

information out of their existing bridge databases. Inspection images contain information on the 

temporal condition of a structure, but they often go unused in subsequent inspections. Tracing the 

history of structural defects over time through past images, inspectors can analyze deterioration 

rates which may prove critical for timely preventative maintenance actions (Bianchi et al. 2023). 

While sifting through these images is a useful inspection exercise, there may be hundreds of images 

stored for a given bridge, and the images are often disorganized (Zhang et al. 2022). Further, due 

to visual ambiguity, it is often difficult for the next inspector to identify the location on the bridge 

where a past image was taken from just the image and its labels, if any labels are present (Yamane 

et al. 2023).  

2.2 Motivation for the Proposed Method 

This thesis explores a solution to aid human inspectors that enables the automatic 

identification of past inspection images corresponding to the same location and scene on a bridge. 

To assess the similarity of image pairs based only on information already in the databases, I 

identify and leverage three extractable pieces of information, including: (1) the EXIF GPS 

coordinates; (2) the classification of the image in terms of its structural element category; and (3) 

the visual similarity of the image to the current image of interest. The first item is the geolocation 

of the images; images taken close to each other in space are more likely to contain the same feature 

of the bridge. However, many images include no geolocation data at all, while others include 

inaccurate data.  

The second and third pieces of information are extracted from the images themselves using 

computer vision techniques. Deep convolutional neural network (CNN) based classifiers have 

proven to be successful at sorting images rapidly and accurately into pre-defined categories 

(Krizhevsky et al. 2017). Within structural engineering, researchers have leveraged this capability 

for damage detection and structural element recognition in a variety of applications (Spencer et al 

2019; Yeum et al 2019; Zhang et al. 2022; Yu and Nishio 2022). Using this technique, a large 

image set for a given bridge can be quickly and reliably sorted into elemental categories. Sorting 

can serve to narrow a pool of relevant prior images that may be similar to one another.  

The final piece of information available is the assessment of image similarity via deep 

machine learning. Despite variation over time in the images of certain bridge features due to 
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changing lane markings, construction activities, seasonal weather, and deterioration, images of 

similar locations and defects on the structure may share certain common visual features that can 

be learned by Siamese CNN (SCNN) and compared using available similarity metrics. Variations 

of this technique are used for applications in facial recognition (Cao et al. 2013; Shroff et al. 2015; 

Apple 2021) and analyzing medical imagery (El-Naqa et al. 2004; Yang et al. 2010; Ktena et al. 

2017). More recently, researchers within civil engineering have applied SCNNs to assist with post-

reconnaissance analyses (Choi et al. 2021) and for detecting railroad track damage (Yang et al. 

2023). 
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 METHODOLOGY 

3.1 Overview 

The developed method leverages previous similarity-based applications (Choi et al. 2022) 

in other fields by fusing image similarity with geolocation information. Neither image similarity 

or GPS coordinate relationships alone provide sufficient information for this application, and thus 

the developed method must be able to consider both. The overall methodology is illustrated in Fig. 

1.  

 

 

Figure 1. Workflow for the image localization and retrieval method 
 

First, a bridge inspector takes a photograph of an element of interest on a given bridge, 

hereafter referred to as the query image. Second, the query image is classified based on the 

structural element that it contains (e.g., deck, superstructure, substructure). Third, using a trained 

SCNN, the query image is reduced in dimensionality and mapped to an invariant embedding vector. 

The network is trained such that images with similar learned features are mapped to spatially 

similar vectors, while images with different learned features are mapped to spatially different 

vectors. The query image embedding is then compared to the embeddings of all other images in a 

given bridge’s database within its element category, returning a ranked list of the most similar 

images to the inspector. If geolocation data is available for a given pair of images, the scores are 

adjusted using a novel composite similarity (CS) scoring metric which combines image similarity 

and with geospatial data. Finally, the most relevant prior images are returned to the inspector based 
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on the ranked CS values. In this way, an inspector can capture an image and be provided with past 

images of the same location and damage in real-time. 

3.2 Structural Element Classification 

Once the query image is captured or selected, it must be classified. Recent research 

conducted by our team used CNN-based image classification to automatically sort bridge 

inspection images per the elements defined in the “AASHTO Manual for Bridge Element 

Inspection” (MBEI), which is the basis for current element-level bridge inspection in the United 

States (Zhang et al. 2022; AASHTO 2013). Zhang et al. developed the classification schema shown 

in Fig. 2 and validated their method using a dataset of more than 11,000 images collected by 

inspectors, with an average accuracy of 94%.  

 

 

Figure 2. The classification schema applied in the developed method (adapted from Zhang et al. 
2022). 

 

This classifier is applied in the current image retrieval task. Classification is necessary to 

narrow the search pool of images for retrieval, creating a higher likelihood of finding query 

matches quickly. Then, in this workflow, a separate similarity-step SCNN must be trained for each 

element category. For example, the “deck” category will have its own independently trained 

image-search capability, as will the “substructure” category, and so on. 
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3.3 Image Similarity Training 

With trained elemental classifiers, the next step in the workflow is the comparison of the 

query image with each of the prior images from the given bridge in the same element category. 

This step is not suitable for CNN-based classification, as the locations and angles of the deck 

images do not fit into any pre-defined categories. Instead, an image retrieval capability is 

developed using a training method established by Hadsell et al. (2006). This technique learns the 

parameters W for some function 𝐺𝐺𝑊𝑊, in this case a deep CNN, to reduce the dimensionality of 

images to a lower dimension vector by a learned invariant mapping (also referred to as an 

embedding).  

For a given set ℒ  of 𝑝𝑝  images corresponding to a single bridge element, image 1 is 

represented in terms of its pixel components as a high-dimensional vector, �⃗�𝑋1. This image may 

have a subset of other images in ℒ that are similar to it by some defined measure. For the large 

size of the vector �⃗�𝑋1, this measure would be difficult to compute. However, by an appropriate 

learned function 𝐺𝐺𝑊𝑊, �⃗�𝑋1 may be mapped to a smaller dimension vector, �⃗�𝑥1. If each �⃗�𝑋𝑚𝑚 ∈ ℒ for 𝑝𝑝 =

1,2,3, … ,𝑝𝑝 is mapped to a smaller �⃗�𝑥𝑚𝑚 in an invariant way, image 1 can then be compared with every 

other image using the Euclidean distance between their reduced-dimension vectors, as represented 

for a given pair ��⃗�𝑋1,�⃗�𝑋2� by 𝐷𝐷𝑊𝑊 in Eq. 1 (Hadsell et al. 2006): 

 

𝐷𝐷𝑊𝑊��⃗�𝑋1, �⃗�𝑋2� = ‖�⃗�𝑥1 − �⃗�𝑥2‖2 = �𝐺𝐺𝑊𝑊��⃗�𝑋1� − 𝐺𝐺𝑊𝑊��⃗�𝑋2��2 . (1) 

This distance is then used to calculate a loss 𝐿𝐿 for the pair of images in the contrastive loss function 

provided by Eq. 2 (Hadsell et al. 2006): 

 

𝐿𝐿 = (1 − 𝑌𝑌)
1
2
𝐷𝐷𝑊𝑊��⃗�𝑋1, �⃗�𝑋2�

2
+  𝑌𝑌

1
2
�max (0,𝑝𝑝 − 𝐷𝐷𝑊𝑊��⃗�𝑋1, �⃗�𝑋2�)2� . (2) 

In this function, 𝑌𝑌 represents the labelled relationship between images 1 and 2, and thus the loss 

function is different based on a pair’s label. For image pairs defined as similar, 𝑌𝑌 = 0, and the loss 

is determined only by the first term. In this case, if the embedding distance 𝐷𝐷𝑊𝑊 is small, then the 

loss is small, and the function 𝐺𝐺𝑊𝑊 has mapped a similar pair close by. On the other hand, if 𝐷𝐷𝑊𝑊 is 

large, the loss is large, and the function 𝐺𝐺𝑊𝑊 has mapped a similar pair far apart. 
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In contrast, image pairs defined as dissimilar are labelled with 𝑌𝑌 = 1, and the loss is 

determined only by the second term. In this second term, the parameter m is defined as the margin, 

a pre-defined parameter that is always greater than zero. Hadsell et al. (2006) describe the margin 

as a limit to how dissimilar pairs can be while still contributing to the loss. In this case, if 𝐷𝐷𝑊𝑊 is 

large, then the loss is small, and 𝐺𝐺𝑊𝑊 has mapped a dissimilar pair far apart. However, increasing 

𝐷𝐷𝑊𝑊 values will have an impact only up to the margin. In this way, the margin exists to eliminate 

cases with abnormally high Euclidian distance measures (Choi et al. 2022). On the other hand, if 

𝐷𝐷𝑊𝑊 is small, then the loss is large, and 𝐺𝐺𝑊𝑊 has mapped a dissimilar pair close by. A simplified 

illustration of the embedding process using a three-dimensional output is provided in Fig. 3, as it 

is easy to visualize– however, any number of dimensions may be used for the embedding. In Fig. 

3, the pair (a) of images 1 and 2 represents a similarly defined pair and is labelled with 𝑌𝑌 = 0, 

while the pair (b) of images 1 and 3 represents a dissimilarly defined pair and is labelled with 𝑌𝑌 =

1. 

 

  

(a)  (b)  

Figure 3. Representation of the embedding process for (a) a similarly defined pair and (b) a 
dissimilarly defined pair. 

 

The training occurs using an SCNN architecture in batches of paired images, where the 

total loss for a given training batch is the sum of the losses for each image pair. In the learning 

process for a single pair, both images are processed in parallel by two different but identical 

(Siamese) networks (𝐺𝐺𝑊𝑊) and the loss for the pair (𝐿𝐿) is calculated. During each training epoch, 

the parameters W in the twin networks are adjusted equally such as to minimize the loss function 

using gradient descent (Hadsell et al. 2006). Thus, the outcome of training is a single network that 
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is trained to reduce the dimensionality of images in such a way that the embeddings are similar or 

different based on the labelling definitions.  

3.4 GPS-Refined Composite Similarity 

Once the network is trained, it can be used to map any new image in the corresponding 

element class. For the image vector pair given by ��⃗�𝑋1,�⃗�𝑋2�, the embedded distance is used to 

calculate a normalized similarity score (SS). Since the results will never be perfect, the intention 

is to retrieve the most similar images in the form of a ranked list. To rank the prior images, a 

scoring system is needed. Choi et al. (2022) showed success with the SS defined as: 

 

𝐶𝐶𝐶𝐶��⃗�𝑋1,�⃗�𝑋2� = �
1

1 + 𝐷𝐷𝑊𝑊��⃗�𝑋1, �⃗�𝑋2�
� . 

(3) 

This function serves to normalize the Euclidian distance, 𝐷𝐷𝑊𝑊, to a value between 0 and 1. When 

the embedding distance between two image embeddings is large, the SS approaches zero. 

Alternatively, when the embedding distance between the two images is small and the images are 

learned to be dissimilar, the SS approaches 1.  

For this application, the SS concept is improved by considering the added benefit that 

image geolocation may have in the ranking process. A composite similarity (CS) score is thus 

developed which fuses the coordinate distances between images into the same domain as the SS. 

This equation may also be optimized based on the quality and quantity of the GPS metadata in the 

given bridge database by adjusting its parameters. The CS score for the pair of images 1 and 2 can 

be calculated using Eq. 4 and is the superposition of two weighted components as: 

 

𝐶𝐶𝐶𝐶��⃗�𝑋1,�⃗�𝑋2� = (1 − 𝛽𝛽)�
1

1 + 𝐷𝐷𝑊𝑊��⃗�𝑋1, �⃗�𝑋2�
� + 𝛽𝛽 ∗ 𝑝𝑝𝑚𝑚𝑥𝑥 �𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚,�1 −

𝑑𝑑(𝐺𝐺𝐺𝐺𝐶𝐶1,𝐺𝐺𝐺𝐺𝐶𝐶2)
𝑑𝑑𝑡𝑡ℎ

�� ≥ 0  
 
(4) 

The first term is taken from Eq. 3 and reflects the output of the trained similarity model in a score 

ranging from 0 to 1. The second term is the geolocation term and assumes that similar images will 

also have been taken at similar points in latitude and longitude coordinate space. The function 𝑑𝑑 

is the Euclidian distance, in meters, between the coordinates 𝐺𝐺𝐺𝐺𝐶𝐶1 and  𝐺𝐺𝐺𝐺𝐶𝐶2 of images 1 and 2, 

respectively, and thus can be any positive value. The constant 𝑑𝑑𝑡𝑡ℎ is chosen based on an analysis 
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of the dataset and represents a threshold distance for whether to penalize or reward the CS score. 

For image pairs where 𝑑𝑑 is small, the images are taken sufficiently close together, and thus the 

second term is positive and approaches 1. As 𝑑𝑑 increases but remains smaller than 𝑑𝑑𝑡𝑡ℎ, the images 

are less likely to be depicting the same scene, and this term of the equation approaches zero. When 

𝑑𝑑 > 𝑑𝑑𝑡𝑡ℎ, the images are unlikely to show similar locations, and the score may become negative. 

The minimum geolocation score component can be defined by the database manager as 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚. 

The weight 𝛽𝛽 in Eq. 4 represents the weight given to the geolocation term relative to the 

visual similarity term and serves to keep the total composite score normalized between 0 and 1. 

This term can be optimized for the quality and quantity of the images and their coordinates and 

may evolve over time with better GPS accuracy. For example, if a dataset has geolocation data 

that is highly inaccurate, it may make sense to have 𝛽𝛽 = 0.10. In this case, the CS score will be 

determined mostly by the visual similarity from Eq. 3, and the GPS component will be only a slight 

adjustment. Note that for GPS data to be considered, both images being compared must have 

coordinates. Thus, for any specific image pair where one or both images lack geolocation data, the 

term 𝛽𝛽 must be taken as zero, and the score for that pairing is only represented by Eq. 3. In this 

way, the developed method applies to databases with varying proportions of GPS availability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

21 

 

 

 EXPERIMENTAL VALIDATION AND RESULTS 

4.1 Initial Classification Step 

As discussed in the methodology, image classification serves as an important pre-filtering 

step prior to evaluating image similarity. This step is completed in two levels by Zhang et al. 

(2022). In the first level, bridge images are successfully classified per Fig. 2 into: (1) overview 

images; (2) deck images; (3) superstructure images; (4) substructure images; (5) railing images; 

(6) very detailed images; and (4) other images. In addition to this first level of classification, 

several secondary-level classifiers are also developed and validated which further refine the 

overview, deck, superstructure, and substructure categories.  

For my part in this task completed by Zhang et al. (2022), I am responsible for the 

secondary substructure classifier which further sorts the bridge substructure images into (1) 

bearing images; (2) pier overview images; (3) pier part images; (4) abutment overview images; 

and (5) abutment part images. To train and validate this classifier, the 2,841 total substructure 

images are labelled into the five sub-categories mentioned, and randomly split into training and 

validation sets at a 4:1 ratio for five consecutive trials. The base CNN chosen for this task is 

ResNet50 with an added SoftMax output layer. All images are resized to 512 X 512 X 3. Data 

augmentations are applied in the form of random rotations, shifts, zooms, and mirroring. Finally, 

a learning rate of 1 × 10−6 is used and the network is trained on a NVIDIA Titan X GPU (Zhang 

et al. 2022).  

On average, the substructure classification accuracy achieved in validation is 86%, which 

is the poorest of all the classifiers developed. The first level of classification, for example, achieved 

an average accuracy of 94%. It is observed that the majority of the misclassifications in the 

substructure category occur between the part and overview categories (i.e., pier part images being 

classified as pier overview images, and vice versa). To illustrate this, an alternative secondary 

substructure schema was tested that combined the part and overview categories, thus considering 

only (1) bearing images; (2) pier images; and (3) abutment images. The network is then trained 

through the same procedure, and the average validation accuracy improved to 93%. We conclude 
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that there is a tradeoff to be considered in the classifier design between numerical accuracy and 

overall inspection utility, as to be determined by the inspectors and asset managers (Zhang et al. 

2022). Several supporting figures and tables for this substructure classification task are provided 

in Appendix A.  

4.2 Bridge Deck Dataset Overview 

 Given the quality and quantity of real-world inspection images used by Zhang et al. (2022), 

a subset of those images is chosen for validating the similarity portion of the method. Specifically, 

images from the deck category are chosen for several reasons. First, deck images are more likely 

than other categories to have accurate GPS metadata. The geolocation accuracy of mobile-device 

GPS is significantly reduced if overhead obstructions are present, such as those images in other 

categories taken under the bridge deck (e.g., the substructure category). While forest canopies, 

mountains, and buildings may also impact the accuracy of recorded coordinates, the deck category 

has the highest potential for accurate metadata (Merry and Bettinger 2019; Wing et al. 2005). In 

addition, bridge decks are generally the fastest-deteriorating bridge components, and thus should 

be a main concern when considering inspection advancements (Kong et al. 2022). 

 A total of 1,068 deck images taken from 40 different bridges were provided by the INDOT. 

The data stored for these bridges had an average of 27 deck images each, with variations in the 

existence and reliability of the GPS metadata, as shown in Fig. 4.  

 

 

Figure 4. The gathered dataset contains historical deck images for 40 bridges with varying GPS 
coordinate availability. Approximately half of the images (52%) have nonzero GPS. 
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Altogether, around half of the images (52%) had nonzero GPS coordinates. It is important 

to specify these as nonzero coordinates because many of the images stored in the database were 

assigned to have zero-valued coordinates, likely due to inspectors processing them through 

different interfaces and software. The method must remain effective even when no geolocation 

metadata is available, as is the case for several of the bridges in the dataset. Several examples are 

shown in Fig. 5, representing a set of similar images. This figure illustrates the potential utility of 

an automated image localization and retrieval system. In a perfect application of this framework, 

an inspector in the field may capture the query photo in Fig. 4 (a) and then be returned the images 

shown in Figs. 4 (b) through (f) corresponding to the previous five inspection cycles. These images 

have variations due to weather, camera type, deck deterioration, and maintenance actions, making 

the application of similarity a challenging task.  

 

   
(a) August 2020 

no GPS data 
(b) August 2019 

no GPS data 
(c) August 2018 

estimated GPS error = 20 meters 

   
(d) August 2017 

no GPS data 
(e) August 2016 

estimated GPS error = 2 meters 
(f) August 2015 

estimated GPS error = 9 meters 

Figure 5. Sample timeline of similar deck images taken from the dataset for a single bridge, 
showing EXIF metadata extracted from the image files and errors from the estimated ground 

truth. 
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Fig. 5 is also representative of the quality of the GPS metadata in the dataset. GPS 

information may be present and reasonably accurate, present but inaccurate, or missing entirely. 

The image shown in Fig. 5 (e) is estimated to have accurate metadata, with the image EXIF 

coordinates being located only two meters from the estimated ground truth coordinates. Fig. 5 (c), 

however, has a significant estimated error of 20 meters. The images shown in Fig. 5 (a), (b), and 

(d) have no coordinate information. Since no ground truth exists for the image coordinates for the 

dataset used for training and validation, and since not all images have coordinates, the ground truth 

locations are estimated using Google satellite maps (Google, n.d.). As collected from the database, 

only about half of the images contain GPS metadata, and the coordinates that do exist often have 

high deviations from the estimated actual locations. 

4.3 Labelling Definitions and Challenges 

 While the SCNN does not measure images in the sense of percent overlap or angle 

differences, having precise definitions for what constitutes a true match versus a false match serves 

to keep the labelling consistent across the entire dataset. A true match pair was defined as any pair 

of images captured from the same bridge deck, which capture approximately the same location of 

the deck from a similar angle, and that share similar visual features. In training, these image pairs 

were labelled with 𝑌𝑌 = 0. A false match pair was defined as any pair of images captured from the 

same bridge deck, but that capture different locations or features of the deck, and otherwise do not 

meet the requirements for a true match. In training, these image pairs are labelled with 𝑌𝑌 = 1. 

Image pairs taken from different bridge decks are not used in the training or evaluation of the 

model. 

Several examples of challenging labelling situations are provided in Fig. 6, including (a) a 

deck joint; (b) a deck overview image; and (c) a close-up wearing surface image. Deck joints are 

some of the most frequently photographed components of a deck and contain many details. These 

images pose a challenge, as joint images taken from different sides of the deck or different sides 

of the bridge have the potential for high visual similarity. The overview images shown in Fig. 6 

(b) are also common but may have more variation in their GPS coordinates, even for true match 

pairs. This variation is because they are captured from zoomed-out perspectives, and so images at 

far apart coordinates may be labelled as true matches and share similar visual features. Likewise, 
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the wearing surface images like those shown in Fig. 6 (c) pose a challenge, as it is impossible to 

determine if they were taken at the same location or not.   

The prescribed labelling definitions were strictly followed while also considering the 

maximum utility of the similar pairs to the inspectors based on the intention of the images. For 

example, for the wearing surface images shown in Fig. 6 (c), the zoomed-in images are all labelled 

as similar pairs, even if it is unlikely that they are capturing the same exact location on the deck. 

This choice is made because these images serve the purpose of measuring the widest bridge cracks 

and are meant to be representative of the entire wearing surface of the structure at that point in 

time. Thus, these pairs are labelled as true matches so that inspectors can see the overall wearing 

surface condition in any given year as a result of their image search.  
  

Image of Interest 
 

Sample True 
Match 
(𝑌𝑌 = 0) 

 

 
Sample False Matches 

(𝑌𝑌 = 1) 
 

(a) 

   
 

(b) 

   
 

(c) 

 
 

  

Figure 6. Examples of labelling for typical bridge images. 
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Overall, for the gathered 40-bridge dataset, 14,959 image pairings were manually labelled as 

prescribed in this section. The labelled dataset is summarized in Table 1, including the distribution 

of the training and testing sets described in the next section. A more detailed summary of the labels 

is included in Appendix B.  

 

Table 1. Summary of the labelled dataset as divided into training and testing subsets. 

4.4 GPS Ground Truth Estimation 

 As mentioned previously, to utilize the CS score developed in this paper, ground truth 

coordinates are estimated using satellite imagery from Google Maps (Google, n.d.). In this way, 

the point where the camera is located is estimated for each of the 195 testing images. While not 

perfect, I estimate the accuracy to be within 2 meters for the majority of images, resulting in the 

best data available for ground truth geolocation data. Fig. 7 shows the distributions, for both the 

true matches and false matches, of the Euclidian distance between each testing pair of images. 

 

 

Figure 7. Distribution of satellite-estimated ground truth distances for all image pairs in the 
validation dataset. 

 

Data split No. bridges No. images No. true matches No. false matches 

Training 32 (80%) 873 902 11,543 
Testing 8 (20%) 195 161 2,353 
Total 40 1,068 1,063 13,896 
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As predicted, true match pairs are generally taken close together in space, while false match 

pairs are taken farther apart and with more variation. The dashed blue and orange lines in Fig. 7 

represent the mean values of 9 m and 50 m between the image coordinates of the true match and 

false match pairs, respectively. 

4.5 Similarity Training Setup 

 The dataset is split randomly into a training dataset and a testing dataset at a 4:1 ratio, as 

summarized in Table 1. A total of 873 images belonging to 32 bridges are used to train the model, 

and 195 images belonging to 8 bridges are used in validation. While this may seem like a small 

dataset for a deep learning task, the training and validation occur over pairs of images, not the 

images themselves. Thus, among the 873 training images, there were more than 12,445 unique 

same-bridge image pairs (902 true matches and 11,543 false matches). For training, all images are 

cropped to the maximum square size from the center point of the original image and are then 

downsized to 100 X 100 X 3. All three RGB-color channels are preserved, as the colors may 

contain valuable information for details such as lane markings. Several image sizes are tested, and 

downsizing the images was found to have little effect on the results. 

In addition, data augmentation is applied in the form of random rotations of ±10 degrees, 

contrast changes of ±10%, brightness changes of ±10%, and saturation changes of ±10% to avoid 

over-fitting (Choi et al. 2022). Zoom augmentations are not implemented such as to preserve the 

labelling intentions and to not accidentally omit similar deck features.  

The network architecture chosen as the baseline model is MobileNetv3 (Howard et al. 

2019). A batch size of 8 image pairs is used, and the learning rate is set to 5 × 10−4. An NVIDIA 

TX TITAN X GPU is utilized to perform the training, and 150 training epochs are chosen 

empirically. The margin, 𝑝𝑝, is set to 2.0, and the output embedding size is chosen to be 10 based 

on trial and error. The resulting loss function given by Eq. 2 is calculated for both the training and 

validation set at each epoch, as shown in Fig. 8.  

Overall, the training is successful, and the loss appears to converge to a minimum value 

after 150 epochs. The high noise and small loss improvement exhibited in the validation loss is 

due to the small size of the batches, which is necessary due to computing limitations. This behavior 

is acceptable, as the similarity learning is validated in the next section and shows that the network 

is successful at distinguishing between true and false match pairs in the testing dataset. The training 
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requires approximately two hours on average for the given hardware and data processing specified 

in this section. 

 

 

Figure 8. A sample of the loss history for 150 training epochs. 

4.6 Composite Similarity Scoring and Ranking 

 Once the similarity model is trained, it is evaluated by computing CS scores (Eq. 4) for all 

of the 2,514 possible image pairings in the testing dataset and comparing the CS distributions for 

labelled true matches and labelled false matches. Further, for every query image, the position of 

the highest-ranked true match within a ranked list of same-bridge images is evaluated, referred to 

as the similarity rank (Choi et al. 2022). Based on the GPS analysis in Fig. 7, a threshold distance 

𝑑𝑑𝑡𝑡ℎ = 20 m is chosen for Eq. 4 as a reasonable value for this dataset, as most true match pairs have 

a distance falling below this value. Further, a maximum penalty of 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = −0.40 and weight of 

𝛽𝛽 = 0.30 are chosen to illustrate the results. Using these parameters, the CS score is calculated for 

each image pair, and the resulting distributions are shown in Fig. 9. The different plots in Fig. 9 

represent different percentages of images having geolocation metadata in the testing set, where (a) 

neglects all GPS; (b) samples GPS for 50% of images; (c) samples GPS for 75% of images; and 

(d) considers all GPS. The resulting spread between the average true match CS scores and the 

average false match CS scores (the distance between the dashed lines) increases from 0.17 (a) to 

0.36 (d) as the estimated ground truth GPS data is added to the dataset.  

The specific images having coordinate information for each comparison are sampled at 

random. Recall that both images in a combination must have GPS information to have a nonzero 
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𝛽𝛽 term in Eq. 4. Therefore, the percent of combinations that consider GPS data is equal to the 

square of the percent of images with GPS, and the number of comparisons made where both images 

have GPS information increases exponentially as the proportion of images with GPS increases. 

Note that to visualize the results in Fig. 9, both the true match and false match CS score 

distributions are mass-normalized, due to the much higher quantity of false match pairings.  

 In a similar way, the performance is evaluated by ranking the CS results for each query 

image. Each image in the testing dataset is used once as the query image, and the CS score is 

calculated between that image and all the other same-bridge deck images. In the final step of the 

method from Fig. 1, all prior images are ranked by their CS and returned to the user. Since the 

inspector alone knows which precise feature they are interested in, they ultimately choose which 

image(s) to analyze based on the ranked list. In this way, the number of images an inspector must 

look through before finding a true match pair is an important performance metric. The distributions 

of these resulting similarity rankings of the first true match for each query image are illustrated in 

the histogram in Fig. 10.  
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(a) 0% GPS Images 

 
(b) 50% GPS Images 

 
(c) 75% GPS Images 

 
(d) 100% GPS Images 

Figure 9. Similarity score distributions for all pairs in the testing dataset, shown for an example 
where 𝛽𝛽 = 0.30, 𝑑𝑑𝑡𝑡ℎ = 20m, and 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = −0.40, for varying rates of GPS availability. 

 

 

Figure 10. Similarity rank distributions for all starting query images in the testing dataset, for the 
same parameters provided in Fig. 9. 
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Fig. 10 illustrates that as more of the images in the database have quality GPS information, 

the true matches are able to be retrieved earlier in the CS-ranked list. While GPS does improve the 

results, it is not critical to the success of the method. In the case of 0% GPS images, for example, 

61% of searches ranked a true match within the top three rankings. The performance of the 

similarity search is further summarized in Table 2 for several values of interest. The theoretical 

percentage of random selection is determined using the average number of images per bridge deck 

(~27), and the average number of true matches per image (~1). Images that have no true matches 

(36 of the 195 in the testing dataset) are not considered in this analysis. Table 2 shows that the 

proposed method performs favorably to random selection.  

 

Table 2. Similarity ranking success for different proportions of database images having GPS. 

Images in 
dataset w/ 

GPS 

Average True Match 
Similarity Rank 

True match 
ranked 1st 

True Match 
ranked in top 3 

True Match 
ranked in top 5 

 
0% 4.9 26% 61% 75% 
50% 4.0 31% 67% 80% 
75% 3.3 44% 74% 87% 
100% 2.5 66% 84% 90% 

Theoretical random selection 4% 12% 20% 
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 DISCUSSION 

5.1 Overall Performance 

The results show that the method performs favorably and has promise for immediate 

application in bridge management databases. An image search capability designed specifically for 

structural inspection will enable inspectors to readily make use of historical bridge images in their 

current procedures. The results of this model when considering no GPS information are worse than 

previous implementations (Choi et al. 2022), and this result is likely due to the high variability in 

the true match definitions– this definition is decided to maximize utility for the inspectors, not to 

maximize performance indicators. Further, among true match pairs the background scenery varied 

significantly between inspection cycles due to seasonal changes and roadside developments (e.g., 

new buildings). Additionally, some error in the results is likely attributable to the high similarity 

of false match pairs. Bridge deck features, when compared to buildings, tend to look very similar 

(i.e., joints) even if they are at different locations of the deck. However, the novel GPS-fusion 

approach greatly increased the effectiveness of the image queries. 

The method can be applied with acceptable performance even when no GPS data is 

available for the images in the database. From the results in Table 2, compared to randomly 

selecting a single past deck image, a user has a six times better chance of selecting a relevant image 

(true match) using image similarity. If all GPS data is considered and contains minimal error (as 

was assumed for this analysis) the results are improved, and an inspector has an eleven times 

greater likelihood of selecting a relevant image (true match) compared to random selection. 

Moreover, 90% of the time the inspector will find what they are looking for within the top 5 CS-

ranked images. An example image query is provided in Appendix C, which shows the searched 

images and their ranked scores. In this example, the six true match images are ranked within the 

top eight positions out of the thirty-nine total comparisons.  

This improvement over random selection is likely underestimating the performance in 

practice when considering the entire method, including the first image classification filter. This 

behavior is because the ~27 searchable images per bridge are exclusively deck images, whereas a 

full bridge dataset may contain more than 100 disorganized images. 
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5.2 Composite Scoring Optimization 

The results assume that all GPS data is reasonably accurate, at least as much as the ground 

truth estimation process would allow. While still improving, geolocation technology is still prone 

to error, especially when obstructions and foliage are present (Merry and Bettinger 2019; Wing et 

al. 2005). This error is evident in the original GPS for the dataset collected which sometimes has 

errors on the scale of kilometers. For a given database, the parameters in Eq. 4 may be optimized 

for the estimated error present. For example, if an inspector knows that the quality of their GPS 

data is poor, they may elect to set 𝛽𝛽 = 0 and ignore it entirely. On the other hand, if an inspector 

has perfect GPS data, they could elect to set 𝛽𝛽 = 1 and consider only GPS coordinates in their 

searches.  

An example of optimal 𝛽𝛽 selection for a dataset with artificial error is illustrated in Fig. 11. 

For this dataset, a random error between 0 and 50 meters is added to the distance between the 

ground truth coordinates for each image pair. Then, the method is again evaluated based on the 

performance metrics discussed in the results. The spread of the average true match CS scores and 

false match CS scores are given for varying GPS availability and 𝛽𝛽 values in Fig. 11 (a). Similarly, 

the percentages of all queries returning a true match within the top 3 rankings are provided in Fig. 

11 (b). Due to the randomness in which images are assigned to GPS and which GPS comparisons 

are assigned with higher errors, this process is followed for 1000 iterations of 𝛽𝛽 ranging from 0 to 

1, to determine the value that, on average, maximizes the two chosen performance metrics.  

The database manager can observe that when 𝛽𝛽 = 0, the metrics converge to those of the 

0% GPS dataset. This is because when no GPS data is available for one or both images in a pairing 

𝛽𝛽 is always taken to be zero. From the figure, the rank metric in Fig. 11 (a) is optimal for values 

of 𝛽𝛽 ≈ 0.15 but might vary based on the proportion of GPS data available. Additionally, the 

spread metric in Fig. 11 (b) is optimal for values of 𝛽𝛽 ≈ 0.25, regardless of GPS availability. Thus, 

for the hypothetical error-prone dataset created the value 𝛽𝛽 ≈ 0.20 should be chosen to optimize 

overall performance. In this way, inspectors can tailor this method to the quality of their historical 

image data.  
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(a) 

 

(b) 

 

Figure 11. Optimizing β for a database with moderate GPS error (0–50 meters). 

5.3 Practical Considerations 

Based on the results, several recommendations are made for practicing bridge inspectors 

that would improve the performance of the method. First, inspectors should take care when 

capturing and transferring images to preserve all metadata recorded by the camera. Further, if 

accurate camera bearing information is gathered and observed, it will provide an opportunity to 

refine the CS method. In addition, standardized and consistent image practices should be used. For 

deck images, the recommendations are: two alignment photos, one from each lengthwise side of 
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the bridge; two photos of each bridge joint and approach slab, one from each widthwise side of the 

bridge deck; one zoomed-in wearing surface photo representative of the entire deck; and extra 

images of any notable damage. Following this recommendation, more than a dozen unique images 

would be taken of a bridge deck during any given inspection. Using image retrieval, a continuous 

temporal sequence of images could then be observed for each location of the deck, as shown in 

Fig. 4. Further, with such standardized data, the model training would also likely improve 

compared to the results presented herein, as this model is trained with highly non-uniform image 

locations and angles. 
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 CONCLUSION 

Bridges are crucial elements in our national transportation networks, and they are 

deteriorating rapidly. Bridge asset managers are under pressure to make the current inventory last 

longer to put off eventual reconstructions. In the short term, there is a need for immediately 

implementable solutions which leverage automation and artificial intelligence to make inspectors 

more efficient and effective decision-makers. The validated method presented herein provides a 

way to rapidly localize and retrieve similar past inspection images using only a current inspection 

image, enabling bridge inspectors to make more informed decisions regarding the management of 

their structures. A composite similarity (CS) metric is introduced which combines existing 

computer vision image similarity techniques with geolocation information. This method is applied 

to a dataset of actual bridge deck inspection images to demonstrate that the CS scoring can be used 

successfully with or without accurate GPS information. 

Future work might include assigning GPS-deficient images with coordinates based on their 

relative similarity to other images in the dataset. Further, this method would improve structural 

inspections for similar applications where geospatial and visual imagery are preserved and utilized 

together in databases. For example, concrete causeway networks may be many miles long and 

experience failures that could be predicted based on visual imagery. A retrieval capability that 

fuses image similarity with geolocation may be beneficial for those and other similar large-scale 

structures. Researchers may also use this method as a part of other fully automated workflows, 

some of which were discussed in this paper. For example, using this method, past images of the 

same bridge location and damage could be isolated, and deterioration rates could be estimated 

using automated damage detection and measurement algorithms.  

 

 

 

 

 

 



 
 

37 

APPENDIX A. SUBSTRUCTURE CLASSIFIER RESULTS 

 

 
Figure A.1. Summary of the image ground truth labels for the secondary substructure image 

classifier for 2,841 total substructure images. 
 

Table A.1. Validation results for each of the five random 4:1 dataset splits.  

Dataset 
Split 

Accuracy Recall Precision 

1 0.844 0.819 0.826 
2 0.877 0.865 0.863 
3 0.865 0.861 0.852 
4 0.851 0.827 0.826 
5 0.842 0.821 0.820 

Average 0.856 0.839 0.838 
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Figure A.2. Confusion matrix for one of the random dataset splits from Table A.1.  
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APPENDIX B. DETAILED SIMILARITY LABELING 

 
Table B.1. Detailed summary of the training dataset labels. 

Bridge 
No. 

  

Dataset  
Split 

No. Unique 
Images 

No. Unique True 
Match Pairs 

No. Unique False Match 
Pairs  

1 Training 15 11 94 
2 Training 26 48 277 
3 Training 47 78 1,003 
4 Training 44 75 871 
5 Training 21 10 200 
6 Training 34 34 527 
7 Training 34 26 535 
8 Training 20 21 169 
9 Training 40 41 739 

10 Training 31 26 439 
11 Training 25 13 287 
12 Training 19 17 154 
13 Training 33 38 490 
14 Training 16 23 97 
15 Training 14 13 78 
16 Training 28 22 356 
17 Training 20 25 165 
18 Training 28 48 330 
19 Training 25 26 274 
20 Training 23 16 237 
21 Training 25 33 267 
22 Training 23 19 234 
23 Training 27 26 325 
24 Training 27 29 322 
25 Training 28 11 367 
26 Training 28 41 337 
27 Training 24 28 248 
28 Training 38 38 665 
29 Training 33 22 506 
30 Training 20 4 186 
31 Training 24 21 255 
32  Training  33  19 509 

Total 873 902 11,543 
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Table B.2. Detailed summary of the validation and testing dataset labels. 
Bridge 

No. 
 

Dataset  
Split 

No. Unique 
Images 

No. Unique True 
Match Pairs 

No. Unique False Match 
Pairs 

33 Validation/Test 10 5 40 
34 Validation/Test 40 33 747 
35 Validation/Test 24 17 259 
36 Validation/Test 21 12 198 
37 Validation/Test 24 21 255 
38 Validation/Test 25 33 267 
39 Validation/Test 27 27 324 
40 Validation/Test 24 13 263 

Total 195 161 2,353 
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APPENDIX C. SAMPLE IMAGE QUERY RESULTS 

 

Figure C.1. Query image used to search the database, chosen as the test image with the most true 
match pairs (6). CS scoring parameters are set to be the same as in Figure 9 ( 𝛽𝛽 = 0.30, 𝑑𝑑𝑡𝑡ℎ =

20m, and 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = −0.40). 

Table C.1. Search results for the image shown in Figure C.1 (39 comparisons). The 6 true match 
images are all ranked within the top 8 CS-sorted values.  

Image Pairwise Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

true match 0.78 0.96 0.83 (1) 

 

true match 0.72 0.96 0.79 (2) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

true match 0.59 0.85 0.66 (3) 

 

false match 0.66 0.65 0.66 (4) 

 

true match 0.56 0.65 0.59 (5) 

 

false match 0.62 0.49 0.58 (6) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

true match 0.41 0.95 0.57 (7) 

 

true match 0.39 0.93 0.55 (8) 

 

false match 0.38 0.25 0.34 (9) 

 

false match 0.42 0.16 0.34 (10) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

false match 0.62 -0.40 0.32 (11) 

 

false match 0.58 -0.40 0.29 (12) 

 

false match 0.57 -0.40 0.28 (13) 

 

false match 0.56 -0.40 0.27 (14) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

false match 0.55 -0.40 0.27 (15) 

 

false match 0.33 0.13 0.27 (16) 

 

false match 0.55 -0.40 0.26 (17) 

 

false match 0.36 0.02 0.26 (18) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

false match 0.51 -0.40 0.24 (19) 

 

false match 0.43 -0.24 0.23 (20) 

 

false match 0.49 -0.40 0.22 (21) 

 

false match 0.49 -0.40 0.22 (22) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

false match 0.48 -0.40 0.22 (23) 

 

false match 0.47 -0.40 0.21 (24) 

 

false match 0.46 -0.40 0.20 (25) 

 

false match 0.40 -0.39 0.16 (26) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

false match 0.40 -0.40 0.16 (27) 

 

false match 0.40 -0.40 0.16 (28) 

 

false match 0.40 -0.40 0.16 (29) 

 

false match 0.40 -0.40 0.16 (30) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

false match 0.39 -0.40 0.15 (31) 

 

false match 0.37 -0.40 0.14 (32) 

 

false match 0.36 -0.40 0.13 (33) 

 

false match 0.34 -0.40 0.12 (34) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

false match 0.34 -0.40 0.12 (35) 

 

false match 0.34 -0.40 0.12 (36) 

 

false match 0.27 -0.40 0.07 (37) 

  

false match 0.26 -0.40 0.06 (38) 
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Table C.1. continued. 

Image Label Similarity 
Score  

Distance 
Score 

Composite 
Score (Rank) 

 

false match 0.23 -0.40 0.04 (39) 
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