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MATHEMATICAL NOTATION

composite similarity score for a given pair of images
Euclidean distance (L2-Norm) between two embedded image vectors

physical distance, in meters, between the coordinate metadata of a given pair of
images

threshold distance, in meters

trained function used in the machine learning algorithm— in this publication, a
Siamese convolutional neural network

latitude and longitude coordinates for a single image in the dataset

value of the contrastive loss function, to be minimized in the network training
process

set of inspection images belonging to a single bridge, for a single structural
element of the bridge

margin used in the contrastive loss function

minimum penalty, representing the minimum score of the GPS component of
the composite similarity score prior to being multiplied by the weight beta

similarity score for a given pair of images without considering GPS information
weights of the parameters of the trained function, Gy,

vector representation of a single image in the dataset

reduced dimension embedding vector for a single image in the dataset
pairwise similarity training label

beta weight representing the proportion of the composite similarity score being
contributed by the GPS component of the composite similarity equation



ABSTRACT

The inspection of highway bridge structures in the United States is a task critical to the
national transportation system. Inspection images contain abundant visual information that can be
exploited to streamline bridge assessment and management tasks. However, historical inspection
images often go unused in subsequent assessments as they are disorganized and unlabeled. Further,
due to the lack of GPS metadata and visual ambiguity, it is often difficult for other inspectors to
identify the location on the bridge where past images were taken. While many approaches are
being considered toward fully- or semi-automated methods for bridge inspection, there are
research opportunities to develop practical tools for inspectors to make use of those images already
in a database. In this study, a deep learning-based image similarity technique is combined with
image geolocation data to localize and retrieve historical inspection images based on a current
query image. A Siamese convolutional neural network (SCNN) is trained and validated on a
gathered dataset of over 1,000 real world bridge deck images collected by the Indiana Department
of Transportation. A composite similarity (CS) metric is created for effective image ranking and
the overall method is validated on a subset of eight bridge’s images. The results show promise for
implementation into existing databases and for other similar structural inspections, showing up to

an 11-fold improvement in successful image retrieval when compared to random image selection.
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1. INTRODUCTION

The United States’ inventory of highway bridge structures is a critical part of its national
transportation system. According to the 2021 American Society of Civil Engineers’ annual
Infrastructure Report Card, approximately 7.5% of the nearly 620,000 bridges in the National
Bridge Inventory (NBI) are rated as being in poor condition or structurally deficient (ASCE 2021).
Their report on the nation’s bridges concluded that the United States must drastically increase
investment to keep up with deterioration, and a systematic program for preservation is needed that
focuses on preventative maintenance (ASCE 2021).

Routine structural inspections, conducted at least every 24 months, are an important part
of bridge preservation and provide the data necessary for asset managers to make timely
maintenance decisions (Abdallah et al. 2022). These inspections are generally conducted by visual
observation. As a result, condition assessments are largely subjective and result in high variability
(Phares et al. 2004; Graybeal et al. 2002). The subjectivity of bridge inspections has motivated a
large body of research that aims to develop semi- or fully-autonomous inspection procedures
(Dorafshan and Maguire 2018). However, at the present, procedures for routine bridge inspections
require that humans perform all inspection observations manually (FHWA 2022). Thus, formal
adoption of these capabilities may take some time.

Another opportunity is to empower the human inspector through automation. There is a
myriad of data already being stored in asset bridge management databases, and enabling inspectors
to capitalize on this data is expected to increase efficiency and effectiveness. To this end, I aim to
develop a novel tool for bridge inspectors which enables the rapid recall of past bridge images to
support their current decision-making. I develop a method which leverages deep machine learning
and GPS coordinate information to compute a composite similarity (CS) metric between pairs of
images which are then ranked and returned to the inspector. The approach is validated using a
dataset of more than 1,000 bridge deck images collected through routine inspections from the
Indiana Department of Transportation (INDOT), and the results show promise for application into

existing databases.
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2. BACKGROUND

2.1 Automation in Bridge Inspection

Current research aims to develop technologies using advanced computing and artificial
intelligence to improve the efficiency and safety of bridge inspections. Towards this vision,
researchers are developing systems to gather data autonomously or remotely using robotic agents
(Phillips and Narasimhan 2019; Sutter et al. 2018; Lim et al. 2014) and unmanned aerial vehicles
(UAVs) (Montes et al. 2022; Seo et al. 2022; Perry et al. 2020; Kim et al. 2018; Lovelace and
Wells 2018). Researchers have also proposed a phased plan for DOTs to transition to one such
fully automated inspection system (Lin et al. 2021). These proposed methods involve costly
vehicles affixed with equipment such as high-end navigation sensors, infrared cameras, and laser
scanners. The inspection robot developed by Phillips and Narasimhan, for example, utilized an
unmanned ground vehicle (UGV) affixed with a light lidar scanner, an inertial measurement unit,
a GPS unit, and an onboard computer.

Researchers are also attempting to automatically quantify and assess structural damage by
implementing machine learning algorithms to process images. These computer vision-based
approaches have been explored for virtually all elements of a bridge, including the detection of
concrete cracks (Deng et al. 2022; Kao et al. 2023; Nguyen et al. 2023), connection bolt issues (Li
et al. 2023; Jiang et al. 2022), steel paint condition (Alayub et al. 2022), joint damage (Gagliardi
et al. 2022), and for determining substructure vulnerability (Zhang et al. 2022).

From an implementation perspective, many of these technologies have real or perceived
challenges including higher equipment costs, increased inspector training requirements, larger data
storage requirements, and reduced driver safety around robots. While some techniques such as
UAV-based inspections are already being utilized for special inspections, scaling these techniques
to the entire NBI inventory will be difficult (Lovelace and Wells 2018). Additionally, the general
public may be slow to approve of inspection automation where life safety is of primary concern
(Shariff et al. 2017). These challenges must be overcome before DOTs are able to implement them
as a part of their processes. A predecessor to autonomous data collection and interpretation may
be to provide inspectors with automated systems in a way that they still make all decisions

themselves (Jiang et al. 2007).
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Automating and improving image organization is one way for inspectors to get more
information out of their existing bridge databases. Inspection images contain information on the
temporal condition of a structure, but they often go unused in subsequent inspections. Tracing the
history of structural defects over time through past images, inspectors can analyze deterioration
rates which may prove critical for timely preventative maintenance actions (Bianchi et al. 2023).
While sifting through these images is a useful inspection exercise, there may be hundreds of images
stored for a given bridge, and the images are often disorganized (Zhang et al. 2022). Further, due
to visual ambiguity, it is often difficult for the next inspector to identify the location on the bridge
where a past image was taken from just the image and its labels, if any labels are present (Yamane

et al. 2023).

2.2 Motivation for the Proposed Method

This thesis explores a solution to aid human inspectors that enables the automatic
identification of past inspection images corresponding to the same location and scene on a bridge.
To assess the similarity of image pairs based only on information already in the databases, I
identify and leverage three extractable pieces of information, including: (1) the EXIF GPS
coordinates; (2) the classification of the image in terms of its structural element category; and (3)
the visual similarity of the image to the current image of interest. The first item is the geolocation
of the images; images taken close to each other in space are more likely to contain the same feature
of the bridge. However, many images include no geolocation data at all, while others include
inaccurate data.

The second and third pieces of information are extracted from the images themselves using
computer vision techniques. Deep convolutional neural network (CNN) based classifiers have
proven to be successful at sorting images rapidly and accurately into pre-defined categories
(Krizhevsky et al. 2017). Within structural engineering, researchers have leveraged this capability
for damage detection and structural element recognition in a variety of applications (Spencer et al
2019; Yeum et al 2019; Zhang et al. 2022; Yu and Nishio 2022). Using this technique, a large
image set for a given bridge can be quickly and reliably sorted into elemental categories. Sorting
can serve to narrow a pool of relevant prior images that may be similar to one another.

The final piece of information available is the assessment of image similarity via deep

machine learning. Despite variation over time in the images of certain bridge features due to
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changing lane markings, construction activities, seasonal weather, and deterioration, images of
similar locations and defects on the structure may share certain common visual features that can
be learned by Siamese CNN (SCNN) and compared using available similarity metrics. Variations
of this technique are used for applications in facial recognition (Cao et al. 2013; Shroff et al. 2015;
Apple 2021) and analyzing medical imagery (El-Naqga et al. 2004; Yang et al. 2010; Ktena et al.
2017). More recently, researchers within civil engineering have applied SCNNs to assist with post-
reconnaissance analyses (Choi et al. 2021) and for detecting railroad track damage (Yang et al.

2023).
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3. METHODOLOGY

3.1 Overview

The developed method leverages previous similarity-based applications (Choi et al. 2022)
in other fields by fusing image similarity with geolocation information. Neither image similarity
or GPS coordinate relationships alone provide sufficient information for this application, and thus
the developed method must be able to consider both. The overall methodology is illustrated in Fig.
1.

Search results from image

Field query === database
image -

; (2021) i

Al i

(2023) (2019) !

(2017)
T res ey e _ Image classified ‘ Visually s.m:ularlty _ Geo.-spatl.al ‘ CS-ranked images
image of interest > by structural »| comparison to > relatlon_shlps » rf:tumed fo
g element database images factored into CS inspector
D e e e e e e e e e e 1

Figure 1. Workflow for the image localization and retrieval method

First, a bridge inspector takes a photograph of an element of interest on a given bridge,
hereafter referred to as the query image. Second, the query image is classified based on the
structural element that it contains (e.g., deck, superstructure, substructure). Third, using a trained
SCNN, the query image is reduced in dimensionality and mapped to an invariant embedding vector.
The network is trained such that images with similar learned features are mapped to spatially
similar vectors, while images with different learned features are mapped to spatially different
vectors. The query image embedding is then compared to the embeddings of all other images in a
given bridge’s database within its element category, returning a ranked list of the most similar
images to the inspector. If geolocation data is available for a given pair of images, the scores are
adjusted using a novel composite similarity (CS) scoring metric which combines image similarity

and with geospatial data. Finally, the most relevant prior images are returned to the inspector based
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on the ranked CS values. In this way, an inspector can capture an image and be provided with past

images of the same location and damage in real-time.

3.2 Structural Element Classification

Once the query image is captured or selected, it must be classified. Recent research
conducted by our team used CNN-based image classification to automatically sort bridge
inspection images per the elements defined in the “AASHTO Manual for Bridge Element
Inspection” (MBEI), which is the basis for current element-level bridge inspection in the United
States (Zhang et al. 2022; AASHTO 2013). Zhang et al. developed the classification schema shown
in Fig. 2 and validated their method using a dataset of more than 11,000 images collected by

inspectors, with an average accuracy of 94%.

f Overview

Deck

Superstructure

Bridge Images Substructure

Railings

Small Details

\ Other

Figure 2. The classification schema applied in the developed method (adapted from Zhang et al.
2022).

This classifier is applied in the current image retrieval task. Classification is necessary to
narrow the search pool of images for retrieval, creating a higher likelihood of finding query
matches quickly. Then, in this workflow, a separate similarity-step SCNN must be trained for each
element category. For example, the “deck” category will have its own independently trained

image-search capability, as will the “substructure” category, and so on.
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33 Image Similarity Training

With trained elemental classifiers, the next step in the workflow is the comparison of the
query image with each of the prior images from the given bridge in the same element category.
This step is not suitable for CNN-based classification, as the locations and angles of the deck
images do not fit into any pre-defined categories. Instead, an image retrieval capability is
developed using a training method established by Hadsell et al. (2006). This technique learns the
parameters W for some function Gy, in this case a deep CNN, to reduce the dimensionality of
images to a lower dimension vector by a learned invariant mapping (also referred to as an

embedding).

For a given set £ of n images corresponding to a single bridge element, image 1 is
represented in terms of its pixel components as a high-dimensional vector, )?1. This image may
have a subset of other images in £ that are similar to it by some defined measure. For the large
size of the vector )?1, this measure would be difficult to compute. However, by an appropriate
learned function Gy, )?1 may be mapped to a smaller dimension vector, X;. If each X i €ELfori =
1,2,3, ..., n is mapped to a smaller ¥; in an invariant way, image 1 can then be compared with every
other image using the Euclidean distance between their reduced-dimension vectors, as represented

for a given pair ()? 1,)? 2) by Dy, in Eq. 1 (Hadsell et al. 2006):

Du (%0, %) = %1 - Zollo = |G (%) = G (£, 1)

This distance is then used to calculate a loss L for the pair of images in the contrastive loss function

provided by Eq. 2 (Hadsell et al. 2006):

1 5 5 1 5o 2
L=(1- Y)EDW(Xl,Xz)Z + Yz{max (0,m — Dy (X1, X,))?}. 2)

In this function, Y represents the labelled relationship between images 1 and 2, and thus the loss
function is different based on a pair’s label. For image pairs defined as similar, Y = 0, and the loss
is determined only by the first term. In this case, if the embedding distance Dy, is small, then the
loss is small, and the function Gy, has mapped a similar pair close by. On the other hand, if Dy, is

large, the loss is large, and the function Gy, has mapped a similar pair far apart.
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In contrast, image pairs defined as dissimilar are labelled with Y = 1, and the loss is
determined only by the second term. In this second term, the parameter m is defined as the margin,
a pre-defined parameter that is always greater than zero. Hadsell et al. (2006) describe the margin
as a limit to how dissimilar pairs can be while still contributing to the loss. In this case, if Dy is
large, then the loss is small, and Gy, has mapped a dissimilar pair far apart. However, increasing
Dy, values will have an impact only up to the margin. In this way, the margin exists to eliminate
cases with abnormally high Euclidian distance measures (Choi et al. 2022). On the other hand, if
Dy, 1s small, then the loss is large, and Gy, has mapped a dissimilar pair close by. A simplified
illustration of the embedding process using a three-dimensional output is provided in Fig. 3, as it
is easy to visualize— however, any number of dimensions may be used for the embedding. In Fig.
3, the pair (a) of images 1 and 2 represents a similarly defined pair and is labelled with Y = 0,
while the pair (b) of images 1 and 3 represents a dissimilarly defined pair and is labelled with Y =

1.

Dimension-

X2 e /" Dimension-
it reduced space

reduced space

(a) (b)

Figure 3. Representation of the embedding process for (a) a similarly defined pair and (b) a
dissimilarly defined pair.

The training occurs using an SCNN architecture in batches of paired images, where the
total loss for a given training batch is the sum of the losses for each image pair. In the learning
process for a single pair, both images are processed in parallel by two different but identical
(Siamese) networks (Gy,) and the loss for the pair (L) is calculated. During each training epoch,
the parameters W in the twin networks are adjusted equally such as to minimize the loss function

using gradient descent (Hadsell et al. 2006). Thus, the outcome of training is a single network that
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is trained to reduce the dimensionality of images in such a way that the embeddings are similar or

different based on the labelling definitions.

3.4  GPS-Refined Composite Similarity

Once the network is trained, it can be used to map any new image in the corresponding
element class. For the image vector pair given by ()? 1,)? 2), the embedded distance is used to
calculate a normalized similarity score (SS). Since the results will never be perfect, the intention
is to retrieve the most similar images in the form of a ranked list. To rank the prior images, a

scoring system is needed. Choi et al. (2022) showed success with the SS defined as:

SS(X, X;) = ( : > . ©)

1+ Dy (X1, X,)

This function serves to normalize the Euclidian distance, Dy, to a value between 0 and 1. When
the embedding distance between two image embeddings is large, the SS approaches zero.
Alternatively, when the embedding distance between the two images is small and the images are
learned to be dissimilar, the SS approaches 1.

For this application, the SS concept is improved by considering the added benefit that
image geolocation may have in the ranking process. A composite similarity (CS) score is thus
developed which fuses the coordinate distances between images into the same domain as the SS.
This equation may also be optimized based on the quality and quantity of the GPS metadata in the
given bridge database by adjusting its parameters. The CS score for the pair of images 1 and 2 can

be calculated using Eq. 4 and is the superposition of two weighted components as:

CS(X1X2) _(1_ﬁ)( ! >+ﬁ*max ; (1—d(GP51'GPSZ)> >0
Ve 14Dy (%1, %,) Pmin. don =0 (4

The first term is taken from Eq. 3 and reflects the output of the trained similarity model in a score
ranging from 0 to 1. The second term is the geolocation term and assumes that similar images will
also have been taken at similar points in latitude and longitude coordinate space. The function d
is the Euclidian distance, in meters, between the coordinates GPS; and GPS, of images 1 and 2,

respectively, and thus can be any positive value. The constant d;;, is chosen based on an analysis
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of the dataset and represents a threshold distance for whether to penalize or reward the CS score.
For image pairs where d is small, the images are taken sufficiently close together, and thus the
second term is positive and approaches 1. As d increases but remains smaller than d;;, the images
are less likely to be depicting the same scene, and this term of the equation approaches zero. When
d > d;y, the images are unlikely to show similar locations, and the score may become negative.
The minimum geolocation score component can be defined by the database manager as p,in.-
The weight £ in Eq. 4 represents the weight given to the geolocation term relative to the
visual similarity term and serves to keep the total composite score normalized between 0 and 1.
This term can be optimized for the quality and quantity of the images and their coordinates and
may evolve over time with better GPS accuracy. For example, if a dataset has geolocation data
that is highly inaccurate, it may make sense to have f = 0.10. In this case, the CS score will be
determined mostly by the visual similarity from Eq. 3, and the GPS component will be only a slight
adjustment. Note that for GPS data to be considered, both images being compared must have
coordinates. Thus, for any specific image pair where one or both images lack geolocation data, the
term 8 must be taken as zero, and the score for that pairing is only represented by Eq. 3. In this

way, the developed method applies to databases with varying proportions of GPS availability.
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4. EXPERIMENTAL VALIDATION AND RESULTS

4.1 Initial Classification Step

As discussed in the methodology, image classification serves as an important pre-filtering
step prior to evaluating image similarity. This step is completed in two levels by Zhang et al.
(2022). In the first level, bridge images are successfully classified per Fig. 2 into: (1) overview
images; (2) deck images; (3) superstructure images; (4) substructure images; (5) railing images;
(6) very detailed images; and (4) other images. In addition to this first level of classification,
several secondary-level classifiers are also developed and validated which further refine the
overview, deck, superstructure, and substructure categories.

For my part in this task completed by Zhang et al. (2022), I am responsible for the
secondary substructure classifier which further sorts the bridge substructure images into (1)
bearing images; (2) pier overview images; (3) pier part images; (4) abutment overview images;
and (5) abutment part images. To train and validate this classifier, the 2,841 total substructure
images are labelled into the five sub-categories mentioned, and randomly split into training and
validation sets at a 4:1 ratio for five consecutive trials. The base CNN chosen for this task is
ResNet50 with an added SoftMax output layer. All images are resized to 512 X 512 X 3. Data
augmentations are applied in the form of random rotations, shifts, zooms, and mirroring. Finally,
a learning rate of 1 X 107° is used and the network is trained on a NVIDIA Titan X GPU (Zhang
et al. 2022).

On average, the substructure classification accuracy achieved in validation is 86%, which
is the poorest of all the classifiers developed. The first level of classification, for example, achieved
an average accuracy of 94%. It is observed that the majority of the misclassifications in the
substructure category occur between the part and overview categories (i.e., pier part images being
classified as pier overview images, and vice versa). To illustrate this, an alternative secondary
substructure schema was tested that combined the part and overview categories, thus considering
only (1) bearing images; (2) pier images; and (3) abutment images. The network is then trained

through the same procedure, and the average validation accuracy improved to 93%. We conclude
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that there is a tradeoff to be considered in the classifier design between numerical accuracy and
overall inspection utility, as to be determined by the inspectors and asset managers (Zhang et al.
2022). Several supporting figures and tables for this substructure classification task are provided

in Appendix A.

4.2 Bridge Deck Dataset Overview

Given the quality and quantity of real-world inspection images used by Zhang et al. (2022),
a subset of those images is chosen for validating the similarity portion of the method. Specifically,
images from the deck category are chosen for several reasons. First, deck images are more likely
than other categories to have accurate GPS metadata. The geolocation accuracy of mobile-device
GPS is significantly reduced if overhead obstructions are present, such as those images in other
categories taken under the bridge deck (e.g., the substructure category). While forest canopies,
mountains, and buildings may also impact the accuracy of recorded coordinates, the deck category
has the highest potential for accurate metadata (Merry and Bettinger 2019; Wing et al. 2005). In
addition, bridge decks are generally the fastest-deteriorating bridge components, and thus should
be a main concern when considering inspection advancements (Kong et al. 2022).

A total of 1,068 deck images taken from 40 different bridges were provided by the INDOT.
The data stored for these bridges had an average of 27 deck images each, with variations in the

existence and reliability of the GPS metadata, as shown in Fig. 4.

B o nonzere GPS
E nonzero GPS

20
m | “ ‘ ‘
0

Bridges

Number of deck images

Figure 4. The gathered dataset contains historical deck images for 40 bridges with varying GPS
coordinate availability. Approximately half of the images (52%) have nonzero GPS.
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Altogether, around half of the images (52%) had nonzero GPS coordinates. It is important
to specify these as nonzero coordinates because many of the images stored in the database were
assigned to have zero-valued coordinates, likely due to inspectors processing them through
different interfaces and software. The method must remain effective even when no geolocation
metadata is available, as is the case for several of the bridges in the dataset. Several examples are
shown in Fig. 5, representing a set of similar images. This figure illustrates the potential utility of
an automated image localization and retrieval system. In a perfect application of this framework,
an inspector in the field may capture the query photo in Fig. 4 (a) and then be returned the images
shown in Figs. 4 (b) through (f) corresponding to the previous five inspection cycles. These images
have variations due to weather, camera type, deck deterioration, and maintenance actions, making

the application of similarity a challenging task.

(a) gtO o (b) August 2019 (c) August 2018
no GPS data no GPS data estimated GPS error = 20 meters

(d) August 2017 “(e) August 2016 (D August2015
no GPS data estimated GPS error = 2 meters estimated GPS error = 9 meters

Figure 5. Sample timeline of similar deck images taken from the dataset for a single bridge,
showing EXIF metadata extracted from the image files and errors from the estimated ground
truth.
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Fig. 5 is also representative of the quality of the GPS metadata in the dataset. GPS
information may be present and reasonably accurate, present but inaccurate, or missing entirely.
The image shown in Fig. 5 (e) is estimated to have accurate metadata, with the image EXIF
coordinates being located only two meters from the estimated ground truth coordinates. Fig. 5 (c),
however, has a significant estimated error of 20 meters. The images shown in Fig. 5 (a), (b), and
(d) have no coordinate information. Since no ground truth exists for the image coordinates for the
dataset used for training and validation, and since not all images have coordinates, the ground truth
locations are estimated using Google satellite maps (Google, n.d.). As collected from the database,
only about half of the images contain GPS metadata, and the coordinates that do exist often have

high deviations from the estimated actual locations.

4.3 Labelling Definitions and Challenges

While the SCNN does not measure images in the sense of percent overlap or angle
differences, having precise definitions for what constitutes a true match versus a false match serves
to keep the labelling consistent across the entire dataset. A true match pair was defined as any pair
of images captured from the same bridge deck, which capture approximately the same location of
the deck from a similar angle, and that share similar visual features. In training, these image pairs
were labelled with Y = 0. A false match pair was defined as any pair of images captured from the
same bridge deck, but that capture different locations or features of the deck, and otherwise do not
meet the requirements for a true match. In training, these image pairs are labelled with Y = 1.
Image pairs taken from different bridge decks are not used in the training or evaluation of the
model.

Several examples of challenging labelling situations are provided in Fig. 6, including (a) a
deck joint; (b) a deck overview image; and (c) a close-up wearing surface image. Deck joints are
some of the most frequently photographed components of a deck and contain many details. These
images pose a challenge, as joint images taken from different sides of the deck or different sides
of the bridge have the potential for high visual similarity. The overview images shown in Fig. 6
(b) are also common but may have more variation in their GPS coordinates, even for true match
pairs. This variation is because they are captured from zoomed-out perspectives, and so images at

far apart coordinates may be labelled as true matches and share similar visual features. Likewise,
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the wearing surface images like those shown in Fig. 6 (c) pose a challenge, as it is impossible to
determine if they were taken at the same location or not.

The prescribed labelling definitions were strictly followed while also considering the
maximum utility of the similar pairs to the inspectors based on the intention of the images. For
example, for the wearing surface images shown in Fig. 6 (c), the zoomed-in images are all labelled
as similar pairs, even if it is unlikely that they are capturing the same exact location on the deck.
This choice is made because these images serve the purpose of measuring the widest bridge cracks
and are meant to be representative of the entire wearing surface of the structure at that point in
time. Thus, these pairs are labelled as true matches so that inspectors can see the overall wearing

surface condition in any given year as a result of their image search.

Image of Interest Sample True Sample False Matches
Match Y =1
(Y =0)

Figure 6. Examples of labelling for typical bridge images.
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Overall, for the gathered 40-bridge dataset, 14,959 image pairings were manually labelled as
prescribed in this section. The labelled dataset is summarized in Table 1, including the distribution

of the training and testing sets described in the next section. A more detailed summary of the labels

is included in Appendix B.

Table 1. Summary of the labelled dataset as divided into training and testing subsets.

Data split  No. bridges  No.images No. true matches  No. false matches

Training 32 (80%) 873 902 11,543
Testing 8 (20%) 195 161 2,353
Total 40 1,068 1,063 13,896

4.4 GPS Ground Truth Estimation

As mentioned previously, to utilize the CS score developed in this paper, ground truth
coordinates are estimated using satellite imagery from Google Maps (Google, n.d.). In this way,
the point where the camera is located is estimated for each of the 195 testing images. While not
perfect, I estimate the accuracy to be within 2 meters for the majority of images, resulting in the
best data available for ground truth geolocation data. Fig. 7 shows the distributions, for both the

true matches and false matches, of the Euclidian distance between each testing pair of images.

False match avg.
------ True match avg.

Normalized Freq.

0 25 50 75 100 125 150
Distance between image pair coord. [meters]

Figure 7. Distribution of satellite-estimated ground truth distances for all image pairs in the
validation dataset.
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As predicted, true match pairs are generally taken close together in space, while false match
pairs are taken farther apart and with more variation. The dashed blue and orange lines in Fig. 7
represent the mean values of 9 m and 50 m between the image coordinates of the true match and

false match pairs, respectively.

4.5 Similarity Training Setup

The dataset is split randomly into a training dataset and a testing dataset at a 4:1 ratio, as
summarized in Table 1. A total of 873 images belonging to 32 bridges are used to train the model,
and 195 images belonging to 8 bridges are used in validation. While this may seem like a small
dataset for a deep learning task, the training and validation occur over pairs of images, not the
images themselves. Thus, among the 873 training images, there were more than 12,445 unique
same-bridge image pairs (902 true matches and 11,543 false matches). For training, all images are
cropped to the maximum square size from the center point of the original image and are then
downsized to 100 X 100 X 3. All three RGB-color channels are preserved, as the colors may
contain valuable information for details such as lane markings. Several image sizes are tested, and
downsizing the images was found to have little effect on the results.

In addition, data augmentation is applied in the form of random rotations of 10 degrees,
contrast changes of +10%, brightness changes of +10%, and saturation changes of +10% to avoid
over-fitting (Choi et al. 2022). Zoom augmentations are not implemented such as to preserve the
labelling intentions and to not accidentally omit similar deck features.

The network architecture chosen as the baseline model is MobileNetv3 (Howard et al.
2019). A batch size of 8 image pairs is used, and the learning rate is set to 5 X 10™*. An NVIDIA
TX TITAN X GPU is utilized to perform the training, and 150 training epochs are chosen
empirically. The margin, m, is set to 2.0, and the output embedding size is chosen to be 10 based
on trial and error. The resulting loss function given by Eq. 2 is calculated for both the training and
validation set at each epoch, as shown in Fig. 8.

Overall, the training is successful, and the loss appears to converge to a minimum value
after 150 epochs. The high noise and small loss improvement exhibited in the validation loss is
due to the small size of the batches, which is necessary due to computing limitations. This behavior
is acceptable, as the similarity learning is validated in the next section and shows that the network

is successful at distinguishing between true and false match pairs in the testing dataset. The training
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requires approximately two hours on average for the given hardware and data processing specified

in this section.
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Figure 8. A sample of the loss history for 150 training epochs.

4.6  Composite Similarity Scoring and Ranking

Once the similarity model is trained, it is evaluated by computing CS scores (Eq. 4) for all
of the 2,514 possible image pairings in the testing dataset and comparing the CS distributions for
labelled true matches and labelled false matches. Further, for every query image, the position of
the highest-ranked true match within a ranked list of same-bridge images is evaluated, referred to
as the similarity rank (Choi et al. 2022). Based on the GPS analysis in Fig. 7, a threshold distance
d:n = 20 mis chosen for Eq. 4 as a reasonable value for this dataset, as most true match pairs have
a distance falling below this value. Further, a maximum penalty of p,,;, = —0.40 and weight of
f = 0.30 are chosen to illustrate the results. Using these parameters, the CS score is calculated for
each image pair, and the resulting distributions are shown in Fig. 9. The different plots in Fig. 9
represent different percentages of images having geolocation metadata in the testing set, where (a)
neglects all GPS; (b) samples GPS for 50% of images; (c) samples GPS for 75% of images; and
(d) considers all GPS. The resulting spread between the average true match CS scores and the
average false match CS scores (the distance between the dashed lines) increases from 0.17 (a) to
0.36 (d) as the estimated ground truth GPS data is added to the dataset.

The specific images having coordinate information for each comparison are sampled at

random. Recall that both images in a combination must have GPS information to have a nonzero

28



[ term in Eq. 4. Therefore, the percent of combinations that consider GPS data is equal to the
square of the percent of images with GPS, and the number of comparisons made where both images
have GPS information increases exponentially as the proportion of images with GPS increases.
Note that to visualize the results in Fig. 9, both the true match and false match CS score
distributions are mass-normalized, due to the much higher quantity of false match pairings.

In a similar way, the performance is evaluated by ranking the CS results for each query
image. Each image in the testing dataset is used once as the query image, and the CS score is
calculated between that image and all the other same-bridge deck images. In the final step of the
method from Fig. 1, all prior images are ranked by their CS and returned to the user. Since the
inspector alone knows which precise feature they are interested in, they ultimately choose which
image(s) to analyze based on the ranked list. In this way, the number of images an inspector must
look through before finding a true match pair is an important performance metric. The distributions
of these resulting similarity rankings of the first true match for each query image are illustrated in

the histogram in Fig. 10.
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Figure 9. Similarity score distributions for all pairs in the testing dataset, shown for an example
where f = 0.30, d;;, = 20m, and ppin =
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Figure 10. Similarity rank distributions for all starting query images in the testing dataset, for the
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same parameters provided in Fig. 9.
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Fig. 10 illustrates that as more of the images in the database have quality GPS information,
the true matches are able to be retrieved earlier in the CS-ranked list. While GPS does improve the
results, it is not critical to the success of the method. In the case of 0% GPS images, for example,
61% of searches ranked a true match within the top three rankings. The performance of the
similarity search is further summarized in Table 2 for several values of interest. The theoretical
percentage of random selection is determined using the average number of images per bridge deck
(~27), and the average number of true matches per image (~1). Images that have no true matches
(36 of the 195 in the testing dataset) are not considered in this analysis. Table 2 shows that the

proposed method performs favorably to random selection.

Table 2. Similarity ranking success for different proportions of database images having GPS.

Images in Average True Match True match True Match True Match
dataset w/ Similarity Rank ranked 1% ranked intop 3  ranked in top 5
GPS
0% 4.9 26% 61% 75%
50% 4.0 31% 67% 80%
75% 3.3 44% 74% 87%
100% 2.5 66% 84% 90%
Theoretical random selection 4% 12% 20%
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5. DISCUSSION

5.1 Overall Performance

The results show that the method performs favorably and has promise for immediate
application in bridge management databases. An image search capability designed specifically for
structural inspection will enable inspectors to readily make use of historical bridge images in their
current procedures. The results of this model when considering no GPS information are worse than
previous implementations (Choi et al. 2022), and this result is likely due to the high variability in
the true match definitions— this definition is decided to maximize utility for the inspectors, not to
maximize performance indicators. Further, among true match pairs the background scenery varied
significantly between inspection cycles due to seasonal changes and roadside developments (e.g.,
new buildings). Additionally, some error in the results is likely attributable to the high similarity
of false match pairs. Bridge deck features, when compared to buildings, tend to look very similar
(i.e., joints) even if they are at different locations of the deck. However, the novel GPS-fusion
approach greatly increased the effectiveness of the image queries.

The method can be applied with acceptable performance even when no GPS data is
available for the images in the database. From the results in Table 2, compared to randomly
selecting a single past deck image, a user has a six times better chance of selecting a relevant image
(true match) using image similarity. If all GPS data is considered and contains minimal error (as
was assumed for this analysis) the results are improved, and an inspector has an eleven times
greater likelihood of selecting a relevant image (true match) compared to random selection.
Moreover, 90% of the time the inspector will find what they are looking for within the top 5 CS-
ranked images. An example image query is provided in Appendix C, which shows the searched
images and their ranked scores. In this example, the six true match images are ranked within the
top eight positions out of the thirty-nine total comparisons.

This improvement over random selection is likely underestimating the performance in
practice when considering the entire method, including the first image classification filter. This
behavior is because the ~27 searchable images per bridge are exclusively deck images, whereas a

full bridge dataset may contain more than 100 disorganized images.
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5.2 Composite Scoring Optimization

The results assume that all GPS data is reasonably accurate, at least as much as the ground
truth estimation process would allow. While still improving, geolocation technology is still prone
to error, especially when obstructions and foliage are present (Merry and Bettinger 2019; Wing et
al. 2005). This error is evident in the original GPS for the dataset collected which sometimes has
errors on the scale of kilometers. For a given database, the parameters in Eq. 4 may be optimized
for the estimated error present. For example, if an inspector knows that the quality of their GPS
data is poor, they may elect to set § = 0 and ignore it entirely. On the other hand, if an inspector
has perfect GPS data, they could elect to set § = 1 and consider only GPS coordinates in their
searches.

An example of optimal £ selection for a dataset with artificial error is illustrated in Fig. 11.
For this dataset, a random error between 0 and 50 meters is added to the distance between the
ground truth coordinates for each image pair. Then, the method is again evaluated based on the
performance metrics discussed in the results. The spread of the average true match CS scores and
false match CS scores are given for varying GPS availability and £ values in Fig. 11 (a). Similarly,
the percentages of all queries returning a true match within the top 3 rankings are provided in Fig.
11 (b). Due to the randomness in which images are assigned to GPS and which GPS comparisons
are assigned with higher errors, this process is followed for 1000 iterations of § ranging from 0 to
1, to determine the value that, on average, maximizes the two chosen performance metrics.

The database manager can observe that when § = 0, the metrics converge to those of the
0% GPS dataset. This is because when no GPS data is available for one or both images in a pairing
p is always taken to be zero. From the figure, the rank metric in Fig. 11 (a) is optimal for values
of f = 0.15 but might vary based on the proportion of GPS data available. Additionally, the
spread metric in Fig. 11 (b) is optimal for values of § = 0.25, regardless of GPS availability. Thus,
for the hypothetical error-prone dataset created the value f = 0.20 should be chosen to optimize
overall performance. In this way, inspectors can tailor this method to the quality of their historical

image data.
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5.3

that would improve the performance of the method. First, inspectors should take care when

capturing and transferring images to preserve all metadata recorded by the camera. Further, if

Queries with a top 3 true match
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Figure 11. Optimizing B for a database with moderate GPS error (0—50 meters).
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Practical Considerations

Based on the results, several recommendations are made for practicing bridge inspectors

accurate camera bearing information is gathered and observed, it will provide an opportunity to

refine the CS method. In addition, standardized and consistent image practices should be used. For

deck images, the recommendations are: two alignment photos, one from each lengthwise side of
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the bridge; two photos of each bridge joint and approach slab, one from each widthwise side of the
bridge deck; one zoomed-in wearing surface photo representative of the entire deck; and extra
images of any notable damage. Following this recommendation, more than a dozen unique images
would be taken of a bridge deck during any given inspection. Using image retrieval, a continuous
temporal sequence of images could then be observed for each location of the deck, as shown in
Fig. 4. Further, with such standardized data, the model training would also likely improve
compared to the results presented herein, as this model is trained with highly non-uniform image

locations and angles.
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6. CONCLUSION

Bridges are crucial elements in our national transportation networks, and they are
deteriorating rapidly. Bridge asset managers are under pressure to make the current inventory last
longer to put off eventual reconstructions. In the short term, there is a need for immediately
implementable solutions which leverage automation and artificial intelligence to make inspectors
more efficient and effective decision-makers. The validated method presented herein provides a
way to rapidly localize and retrieve similar past inspection images using only a current inspection
image, enabling bridge inspectors to make more informed decisions regarding the management of
their structures. A composite similarity (CS) metric is introduced which combines existing
computer vision image similarity techniques with geolocation information. This method is applied
to a dataset of actual bridge deck inspection images to demonstrate that the CS scoring can be used
successfully with or without accurate GPS information.

Future work might include assigning GPS-deficient images with coordinates based on their
relative similarity to other images in the dataset. Further, this method would improve structural
inspections for similar applications where geospatial and visual imagery are preserved and utilized
together in databases. For example, concrete causeway networks may be many miles long and
experience failures that could be predicted based on visual imagery. A retrieval capability that
fuses image similarity with geolocation may be beneficial for those and other similar large-scale
structures. Researchers may also use this method as a part of other fully automated workflows,
some of which were discussed in this paper. For example, using this method, past images of the
same bridge location and damage could be isolated, and deterioration rates could be estimated

using automated damage detection and measurement algorithms.

36



APPENDIX A. SUBSTRUCTURE CLASSIFIER RESULTS
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Figure A.1. Summary of the image ground truth labels for the secondary substructure image
classifier for 2,841 total substructure images.

Table A.1. Validation results for each of the five random 4:1 dataset splits.

Dataset Accuracy Recall Precision
Split
1 0.844 0.819 0.826
2 0.877 0.865 0.863
3 0.865 0.861 0.852
4 0.851 0.827 0.826
5 0.842 0.821 0.820
Average 0.856 0.839 0.838
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Figure A.2. Confusion matrix for one of the random dataset splits from Table A.1.
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APPENDIX B. DETAILED SIMILARITY LABELING

Table B.1. Detailed summary of the training dataset labels.

Bridge Dataset No. Unique No. Unique True No. Unique False Match
No. Split Images Match Pairs Pairs
1 Training 15 11 94
2 Training 26 48 277
3 Training 47 78 1,003
4 Training 44 75 871
5 Training 21 10 200
6 Training 34 34 527
7 Training 34 26 535
8 Training 20 21 169
9 Training 40 41 739
10 Training 31 26 439
11 Training 25 13 287
12 Training 19 17 154
13 Training 33 38 490
14 Training 16 23 97
15 Training 14 13 78
16 Training 28 22 356
17 Training 20 25 165
18 Training 28 48 330
19 Training 25 26 274
20 Training 23 16 237
21 Training 25 33 267
22 Training 23 19 234
23 Training 27 26 325
24 Training 27 29 322
25 Training 28 11 367
26 Training 28 41 337
27 Training 24 28 248
28 Training 38 38 665
29 Training 33 22 506
30 Training 20 4 186
31 Training 24 21 255
32 Training 33 19 509
Total 873 902 11,543
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Table B.2. Detailed summary of the validation and testing dataset labels.

Bridge Dataset No. Unique No. Unique True No. Unique False Match
No. Split Images Match Pairs Pairs
33 Validation/Test 10 5 40
34 Validation/Test 40 33 747
35 Validation/Test 24 17 259
36 Validation/Test 21 12 198
37 Validation/Test 24 21 255
38 Validation/Test 25 33 267
39 Validation/Test 27 27 324
40 Validation/Test 24 13 263

Total 195 161 2,353
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APPENDIX C. SAMPLE IMAGE QUERY RESULTS

Figure C.1. Query image used to search the database, chosen as the test image with the most true
match pairs (6). CS scoring parameters are set to be the same as in Figure 9 ( f = 0.30, d¢, =
20m, and pyin = —0.40).

Table C.1. Search results for the image shown in Figure C.1 (39 comparisons). The 6 true match
images are all ranked within the top 8 CS-sorted values.

Image Pairwise Label Similarity Distance Composite
Score Score Score (Rank)

true match 0.78 0.96 0.83 (1)

true match 0.72 0.96 0.79 (2)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)
true match 0.59 0.85 0.66 (3)
false match 0.66 0.65 0.66 (4)
true match 0.56 0.65 0.59 (5)
false match 0.62 0.49 0.58 (6)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)

true match 0.41 0.95 0.57 (7)

true match 0.39 0.93 0.55(8)

false match 0.38 0.25 0.34 (9)

false match 0.42 0.16 0.34 (10)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)

false match 0.62 -0.40 0.32(11)

false match 0.58 -0.40 0.29 (12)

false match 0.57 -0.40 0.28 (13)

false match 0.56 -0.40 0.27 (14)

44



Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)
false match 0.55 -0.40 0.27 (15)
false match 0.33 0.13 0.27 (16)
false match 0.55 -0.40 0.26 (17)
false match 0.36 0.02 0.26 (18)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)

false match 0.51 -0.40 0.24 (19)

false match 0.43 -0.24 0.23 (20)

false match 0.49 -0.40 0.22 (21)

false match 0.49 -0.40 0.22 (22)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)

false match 0.48 -0.40 0.22 (23)

false match 0.47 -0.40 0.21 (24)

false match 0.46 -0.40 0.20 (25)

false match 0.40 -0.39 0.16 (26)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)
false match 0.40 -0.40 0.16 (27)
false match 0.40 -0.40 0.16 (28)
false match 0.40 -0.40 0.16 (29)
false match 0.40 -0.40 0.16 (30)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)
false match 0.39 -0.40 0.15 (31
false match 0.37 -0.40 0.14 (32)
false match 0.36 -0.40 0.13 (33)
false match 0.34 -0.40 0.12 (34)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)
false match 0.34 -0.40 0.12 (35)
false match 0.34 -0.40 0.12 (36)
false match 0.27 -0.40 0.07 (37)
false match 0.26 -0.40 0.06 (38)
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Table C.1. continued.

Image Label Similarity Distance Composite
Score Score Score (Rank)

false match 0.23 -0.40 0.04 (39)
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